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Many materials, processes, and structures in science and engi-
neering have important features at multiple scales of time and/or
space; examples include biological tissues, active matter, oceans,
networks, and images. Explicitly extracting, describing, and defin-
ing such features are difficult tasks, at least in part because
each system has a unique set of features. Here, we introduce an
analysis method that, given a set of observations, discovers an
energetic hierarchy of structures localized in scale and space. We
call the resulting basis vectors a “data-driven wavelet decompo-
sition.” We show that this decomposition reflects the inherent
structure of the dataset it acts on, whether it has no structure,
structure dominated by a single scale, or structure on a hierarchy
of scales. In particular, when applied to turbulence—a high-
dimensional, nonlinear, multiscale process—the method reveals
self-similar structure over a wide range of spatial scales, providing
direct, model-free evidence for a century-old phenomenological
picture of turbulence. This approach is a starting point for the
characterization of localized hierarchical structures in multiscale
systems, which we may think of as the building blocks of these
systems.

wavelet | multiscale | data-driven decomposition | machine learning |
turbulence

M any important processes are multiscale in nature, mean-
ing that they exhibit structure at multiple scales of time
and/or space. In nature, a prominent example is the dynam-
ics of oceans and associated interactions with the atmosphere,
which govern the planet’s weather and climate systems (1); much
effort is expended in capturing and understanding effects at
multiple scales of time and space (2). In engineering, a promi-
nent example is networks, specifically social media networks.
Networks have multiscale structure by virtue of hierarchies of
communities of nodes in the networks (3). Understanding the
structure of hierarchical communities in social media networks is
crucial to understanding the spread of disinformation (and cen-
sorship of information) in these networks (4). Broadly speaking,
identifying and understanding the features present in multiscale
processes are crucial to understanding and controlling these
processes. Although the application we focus on here will be
turbulent fluid flows, the ensuing discussion applies to any mul-
tiscale process for which the notions of energy (variance in
the statistical context) and localization (a form of sparsity) are
relevant.

Turbulence is a canonical multiscale process consisting of
localized concentrations of vortex motion that are coherent in
space and time and coexist at a wide range of scales. Theo-
retical arguments indicate that at intermediate scales and far
from walls the structure of a turbulent flow should be self-
similar (5, 6). This notion is qualitatively illustrated in Fig. 1,
which illustrates a snapshot from a simulation of homogeneous
isotropic turbulence (HIT) at several scales (7-10). As with
other multiscale processes, a great challenge in fluid dynamics
is to rationally identify and analyze coherent structures from a
complex turbulent flow field. While it is often mathematically
convenient to analyze signals in the Fourier domain, trigonomet-
ric functions are not localized in space, and what one observes
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at an instant in time in a turbulent flow rarely, if ever, looks
sinusoidal. Alternately, conventional wavelet bases, which are
localized and self-similar, can be used for analysis (11). In
both the Fourier and wavelet approaches the bases for rep-
resenting the flow are imposed a priori rather than emerging
from data.

One of the primary methods of extracting structure from data
is principal components analysis (PCA), which in fluid dynamics
is typically denoted proper orthogonal decomposition (12) (see
ref. 13 for other popular modal decomposition methods). Given
an ensemble (often a time series) of data, PCA yields a data-
driven orthogonal basis whose elements are optimally ordered
by energy content. When applied to velocity field data for a
fluid flow, the resulting basis elements may be thought of as
the building blocks of that flow, and its application has yielded
many structural and dynamical insights (12, 14). One limitation
of PCA is that the basis elements tend not to be localized in
space; indeed, for directions in which a field is statistically homo-
geneous, the PCA basis elements are Fourier modes (12). In this
case, not only do the PCA modes have no localization in space
but they also reveal no information about the flow beyond what
Fourier decomposition would provide.

A well-known formalism that produces bases with spatially
localized elements is that of wavelets. The name is quite descrip-
tive: Wavelets are localized waves. In particular, wavelet decom-
positions provide an orthogonal basis whose elements are local-
ized in both space and scale. Traditionally, the basis elements
are translations and dilations of a single vector called the mother
wavelet (15-19). ST Appendix, section 1 provides a concise sum-
mary of results relevant to the present work. Traditional wavelet
methods (where the mother wavelet is prescribed a priori) have
already found use in turbulence precisely because of the space-
scale unfolding they produce (11, 20-27), giving hope that data-
driven methods based on wavelets may lead to new insights into
turbulence.

A myriad of data-driven methods of structure identification
and extraction based on wavelets have been developed (e.g.,
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Fig. 1. Snapshot of HIT from the Johns Hopkins Turbulence Databases
(7-10), showing the kinetic energy per unit mass, with darker color
corresponding to greater energy.

refs. 28-38). Although these methods may yield localized struc-
tures, they are limited in that the construction of the resulting
basis elements is prescribed in either scale or frequency, and
many impose self-similarity on the basis, as is done with tra-
ditional wavelets (the “empirical wavelet transform” of ref.
28 does not have this feature but relies on the existence
of local maxima in the power spectrum of a signal, making
it ill-suited to phenomena like turbulence without such local
maxima).

In the present work we develop a method that integrates the
data- and energy-driven nature of PCA with the space and scale
localization properties of wavelets. As our derivation and illus-
trative examples will reveal, we impose very little structure in
our method, so any structure in the basis may be attributed to
the underlying structure of the dataset under consideration. We
call the resulting basis a “data-driven wavelet decomposition”
(DDWD) and use it to gain insights into the structure of tur-
bulence, though we emphasize that the method is general in its
application.

Formulation

Before presenting the DDWD, it will be useful to introduce key
features of PCA and conventional wavelet decompositions. Sup-
pose we have a dataset {z }1£, € RY, each z; being a sample data
vector (e.g., one component of a velocity field uniformly sampled
along a line through the flow). We can arrange the dataset into
a matrix Z € R *M whose columns are the data vectors z;, nor-
malized so that tr ZZ” =1 (the normalization does not change
the results of PCA, but is done here because it parallels our for-
mulation of DDWD later). PCA seeks an ordered orthonormal
basis {4:} 2., such that the energy of the dataset projected onto
the first K < N basis elements is maximized. One way to state
this problem, which parallels our later description of data-driven
wavelets, is as follows. We determine the first basis element ¢;
so that the projection of the data onto this element is maximized.
This problem can be written

max R AN) (1]

st. ¢Tp=1. [2]

The solution to this problem is the eigenvector of ZZ with the
largest eigenvalue. The second basis element ¢ is found by pro-
jecting out the component of the data in the ¢, direction and
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repeating, yielding that ¢ is the eigenvector of ZZ 7 with the
second-largest eigenvalue. Basis elements ¢; solve

i—1
¢ (Z—Zcms]TZ)
j=1

st. ¢To=1, ¢"$;j=0,5=1,...,i—1. [4]
This formulation is recursive, producing a hierarchy of subspaces
ordered by how much of the dataset’s energy (Frobenius norm)
they contain: RY =span{¢1} @ ... ®span{¢y}. The basis ele-
ments ¢; are the eigenvectors of ZZT. For statistically homo-
geneous data in a periodic domain, ZZ” (more precisely, its
expected value) is circulant, in which case the ¢; are simply
discrete Fourier modes.

Traditional wavelet decompositions also produce a hierarchy
of orthogonal subspaces, but there are important differences
from PCA. First, the basis elements are not determined from
data but are selected a priori; there are many standard options
(18). Second, by construction, the decomposition produces a
hierarchy of orthogonal subspaces ordered by scale, as shown in
Fig. 24. We consider periodic vectors on RY, with N even (19).
This space is split into subspaces V_; and W_1, each of dimen-
sion N /2, and each spanned by the even translates of vectors ¢_;
(the father wavelet) and ¥ (the mother wavelet), respectively.
Once ¢_1 is known, v_; can be found, and vice versa. The father
and mother wavelets, and their even translates, are mutually
orthonormal by construction. Subspace V_; is called an approx-
imation subspace because it contains all of the low frequencies,
and W_; is called a detail subspace because it contains all of the
high frequencies. Given a signal, its projection onto V_; pro-
duces a low-pass-filtered version of the signal, and its projection
onto W_; produces the detail needed to reconstruct the full sig-
nal. We then recursively split the approximation subspaces. For
N =27 (which we assume throughout), we get a hierarchy of
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Fig. 2. (A) Subspaces from wavelets on R". At stage /, approximation sub-
space V_, is split into detail subspace W_,_4 and approximation subspace
V_,_4, each half the dimension of V_,. Subspace V_, is spanned by the

N/2' translates by 2/ of ¢_;, and W_, is spanned by the N/2' translates by
2! of 4_,. The full space is decomposed into progressively coarser subspaces,
RVN=w_,®...® W_p, & V_p, or, going the other way, into the addition of
progressively finer details. These subspaces are highlighted. In the present
work, an ensemble of data is used to define a specific decomposition of this
form. (B) Discrete Meyer wavelet for N = 4,096 and / = 6.
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Fig. 3. White noise wavelets on R?". Coloring as in Fig. 2A. No variance penalty (A), small variance penalty (B), and large variance penalty (C).

subspaces of progressively coarser scales: RV =W_1®...®
W_, @ V_,. For traditional wavelets, the sets of wavelets {¢;}
and {v;} are determined from the father and mother wavelets,
respectively, by a rescaling operation that is essentially a simple
dilation by a factor of two (see SI Appendix, section 4A, for more
details). This process leads to a hierarchical basis structure of the
form shown in Fig. 24.

The DDWD combines the hierarchical structure of wavelets
that is shown in Fig. 24 with the energetic optimization of PCA.
Namely, each time we split a subspace, we design the subsequent
subspaces so that the approximation subspace contains as much
of the dataset’s energy as possible.

The first step of the process is to find the wavelet generator ,
for which the projection of the data onto this vector and its even
translates is maximized. We define V_; as the subspace spanned
by these vectors, thus beginning the data-driven construction of a
hierarchy with the structure of Fig. 24. This maximization is sub-
ject to 1) the constraint that » and its even translates are mutually
orthonormal and 2) a penalty on the width of «, as measured by
its circular variance Var(u). This problem is stated as

N/2—1
max u” Au — A\*Var(u), A:% Z R** 77" R*
: 1215 2=
[5]
st.u” R**u=60, k=0,...,N/2—1. [6]

Here )\ measures the penalty on the variance, whose effect on
the results we illustrate below, and R is the circular shift opera-
tor: For example, if u = [a, b, ¢, d] 7, then Ru=[d, a, b, ¢]”. The
solution u and its even translates generate the vectors ¢_; and
1_1; the former span V_; and the latter W_,. We then project
the data onto V_;, replace N by N/2 in the definition of A
and the orthonormality constraints, decrease A by a factor of
2, and repeat, yielding ¢_» and 1/_», and thus the subspaces V_»
and W_,. We proceed recursively, finding the subspaces V_; and
W_; such that V_; contains the maximal amount of energy of the
dataset. Extensive details are found in SI Appendix, section 2. In
the end, we find an energetic hierarchy of subspaces, optimized
stage by stage, whose elements are orthogonal and localized. In
contrast to previous data-driven methods incorporating wavelets,
which impose restrictive structure, the only structure we impose
is orthogonality, localization, and the hierarchy of Fig. 24. In S/
Appendix, section 3 we also draw parallels between the DDWD
and convolutional neural networks and show how the DDWD
naturally incorporates pooling and skip connections, two tricks

Floryan and Graham
Discovering multiscale and self-similar structure with data-driven wavelets

that improve the performance of neural network architectures
(39). Together with its inverse transform, the DDWD is akin to
a convolutional autoencoder, but with the additional features of
orthogonality of all elements, stagewise energetic optimality, and
the ability to unambiguously extract structure, which make the
results interpretable.

We make a point to note that for the DDWD the stage [ of the
hierarchy should not be conflated with the concept of scale. For
traditional wavelets, stage and scale are interchangeable since
whenever a subspace is split the lower half of frequencies is
always pushed to the approximation subspace and the upper half
of frequencies is always pushed to the detail subspace. For the
DDWD, however, the distribution of frequencies among the sub-
spaces is dictated by energetic considerations, which depends on
the dataset under consideration. An example below will elucidate
this point.

Results

We will demonstrate the DDWD on three datasets with increas-
ingly complex structure to show that the method extracts
structure inherent to the data.

Gaussian Random Data. The first dataset we consider consists
of Gaussian white noise, which has no structure. By construc-
tion, the basis produced by the DDWD is orthonormal, so the
change-of-basis transformation is orthogonal. Any orthogonal
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Fig. 4. Trajectory (A) and attendant power spectrum (B) of the Kuramoto—
Sivashinsky equation.
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Fig. 5. Kuramoto-Sivashinsky wavelets (A), offset from each other by 0.5,
and their power spectra (B). Coloring as in Fig. 2A. The variance penalty is
A2 =0.1.

transformation of Gaussian white noise produces Gaussian white
noise. Therefore, applied to Gaussian white noise, the coordi-
nates of the data in the DDWD basis (the wavelet coefficients)
will be Gaussian white noise, so all wavelet coefficients will be
uncorrelated and have energy equal to that of the input Gaus-
sian white noise. As long as we do not impose a variance penalty,
this result implies that for Gaussian white noise there is no opti-
mal set of wavelets, in the sense we have defined. In other words,
the DDWD reflects that the dataset has no structure. If we do
impose a variance penalty, then the optimal wavelets become
discrete delta functions (i.e., the Euclidean basis vectors). The
reason for this is simple: All wavelets capture the energy of
white noise equally well, but the delta function will be the most
localized among them.

The result that all wavelets capture the energy of Gaussian
white noise equally well highlights an interesting fact about the
DDWD. In Fig. 3 we show three sets of wavelets that are com-
puted from a dataset of Gaussian white noise. Fig. 34 has no
variance penalty, Fig. 3B has a small variance penalty, Fig. 3C
has a large variance penalty, and all wavelets are colored accord-
ing to the color coding used in Fig. 24. Despite the fact that we
have used the structure of Fig. 24, there is no apparent hierar-
chy of scales among the left set of wavelets. This highlights what
we noted earlier, that the concept of scale is not built into the
DDWD; rather, it must be learned from the data. When we add
a small variance penalty, wavelets corresponding to finer-detail
subspaces are more localized, but all wavelets are jagged; this will
contrast with our later examples where wavelets corresponding
to later stages are smoother, reflecting the inherent structure of
the later examples. Note that although the central set of wavelets
was computed with nonzero variance penalty, they are not delta
functions as we had asserted earlier; this is due to the dataset
containing a finite number of samples, and this effect weakens
as the number of samples increases or as the variance penalty is
increased (as for the right set of wavelets). In Fig. 3C, all of the
vectors are discrete delta functions; while this might seem redun-
dant, only certain translates of the discrete delta function are
included in each stage, and the resulting basis consists of delta
functions localized at each mesh point.

Kuramoto-Sivashinsky Chaos. The second dataset we consider
comes from the Kuramoto-Sivashinsky equation,

Ut + Ule + Uze + Vil =0, [7]

for 0<z<2nw, with periodic boundary conditions and
v=(m/11)?, which yields chaotic dynamics. We compute a
numerical solution using a pseudo-spectral method with 64
Fourier modes and assemble a dataset consisting of 90,001
snapshots taken from a single trajectory. The latter part of the
trajectory and the power spectrum in Fig. 4 clearly show that the
structure is dominated by a single length scale with wavenumber
k around 2 to 3.
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We compute the DDWD with a range of variance penalties,
showing the result for A>=0.1 in Fig. 5 (others are shown in
SI Appendix, section 4B). We only show one set of wavelets
because, no matter the variance penalty, the coarsest subspaces
are the same: V_g is spanned by a sine wave with wavenum-
ber k£ =2 (the most energetic wavenumber), W_g is spanned by
a sine wave with wavenumber & =3 (the second-most-energetic
wavenumber), and W_s is spanned by a vector (and its trans-
late) containing only wavenumbers k = 3 and 4 (k =4 is the next
most energetic wavenumber). The DDWD is thus robust in push-
ing the dominant (most energetic) length scales of the system
to the lowest stages. Moreover, the energy contained in each
subspace is also robust to the variance penalty (SI Appendix).
The first difference between wavelets computed with different
variance penalties appears in the subspace W_,4, spanned by
the four translates of ¢)_4. As the variance penalty is increased
the wavenumber £ =8 is exchanged for £ = 0. Energetically, this
makes little difference since k& = 8 is highly damped by the hyper-
viscous term and contains very little energy, and £ =0 contains
identically zero energy (for the boundary conditions we use, the
spatial mean is constant and can be set to zero). The compo-
sitions of the finer detail subspaces do not change qualitatively
with variance penalty, with finer detail subspaces containing
higher wavenumbers. As the variance penalty is increased, local-
ization in the Fourier domain is exchanged for localization in the
spatial domain.

Homogeneous Isotropic Turbulence. The final and primary dataset
we consider is of forced HIT, taken from the Johns Hopkins Tur-
bulence Databases (7-10). We use a single snapshot from a direct
numerical simulation on a 4,096° periodic grid with a Taylor-
scale Reynolds number of 610.57, shown in Fig. 1; more details
are available in the database’s documentation. Our dataset con-
sists of the velocity component aligned with 16,384 randomly
sampled lines (the “longitudinal velocity”) that are parallel to
the axes. Each sample is a vector of length N = 4,096. The
power spectrum is broad and has the expected —5/3 power law
in the inertial subrange, which roughly contains wavenumbers
k€ [2,60].
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Fig. 6. HIT wavelets, vertically offset from each other by 0.25. Coloring

as in Fig. 2A. The variance penalties are A>=10"" (4), A>=10° (B), and
A2 =10"(0).
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Fig. 7. Projection (denoted P) of one vector (denoted 2z) in the turbulence
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variance penalties considered (C) (\> =0, 10", 10° and 10'; only the result
for A2 =10" [red] can be seen).

Fig. 6 shows the DDWD with various variance penalties (their
power spectra are shown in SI Appendix, section 4C). While
at A2=10"" the wavelets are well-localized only for [ <5, for
A% =10° and 10* localization is observed for I < 8 and 9, respec-
tively. Moreover, despite the order-of-magnitude difference in
A2 between the latter two cases, the wavelets for 4 <[ <8 are
nearly indistinguishable (see SI Appendix for more details). Fur-
thermore, with increasing [, the wavelets have increasing scale:
The DDWD reveals a hierarchy of scales present in the dataset, a
known feature of turbulence. Recall that this feature is not built
into the DDWD; rather, the method has extracted the concept
of scale hierarchy from the turbulence dataset. In this case, it is
appropriate to conflate stage and scale.

It is also worth noting that with increasing variance penalty
the composition of each scale in the Fourier domain (shown in
SI Appendix) becomes smoother and more robust, varying less
across different trials. Overall, the composition of the wavelets
in the Fourier domain is robust to the variance penalty.

To illustrate the reconstruction of data vectors using the
DDWD basis, Fig. 74 shows one vector from the turbulence
dataset and its projections onto the subspaces V_; computed
with A% =10'. Lighter colors show more detailed reconstruc-
tions, and the thin black line shows the original data vector. At
the coarsest level of approximation, we essentially reconstruct
the spatial mean and then add progressively finer-scale features
as we add smaller scale wavelet components. Fig. 7 B and C,
respectively, show the reconstruction errors of the progressively
finer projections, and the energy of the entire dataset contained
in each stage, for A2=0,10"",10°, and 10'. The differences
in these quantities as A changes are visibly indistinguishable,
indicating robustness of the DDWD with respect to variance
penalty.

Most interestingly, we check the wavelets that arise from the
HIT data for self-similarity across stages. We present here results
for the most localized wavelets, corresponding to A? = 10*, and
show in SI Appendix, Fig. S10, that the same conclusions hold
for A =10°. Fig. 8 A-E show wavelets 1_; for 4 <1< 8; note
the change in horizontal scale from plot to plot. Aside from their
horizontal scale, these wavelets are evidently very similar look-
ing. The figure also shows on each plot the rescaled version of
the wavelet at the previous level, S¢_;;1, where S essentially
dilates a vector by a factor of 2 and rescales it so that it has
unit norm. (See SI Appendix, section 4A for a precise descrip-
tion of S and SI Appendix, Figs. S10 and S11 for plots of i_;
and Sv_ ;1 for all [.) For ease of comparison, we have shifted
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the wavelets and in some cases reflected them about their axes.
In all cases shown, 1_; and St _;41 are nearly indistinguishable,
indicating strong self-similarity across stages [ =4 to [ =8. This
observation can be quantified: Fig. 8F shows the inner product
T84 _111, whose absolute value is bounded by 0 and 1, for
all stages. It is very close to unity for /> 3. This strong self-
similarity also holds for the lower variance penalty A% =10°, as
shown in SI Appendix, Fig. S10, indicating that it is a robust fea-
ture derived from the data. Stages 4 to 8 contain the approximate
wavenumbers k € [10, 200], which coincides with the inertial sub-
range where self-similarity is expected. (The larger scales are
no longer localized, so we draw no significance from the high
measure of similarity in those cases.) Interestingly, the wavelets
in the self-similar range are quite similar to the discrete Meyer
wavelet (18), shown in Fig. 2B, as well as to the Battle-Lemarié
wavelet used by Meneveau in his analysis of turbulent flows (27).
Performing Meneveau’s analysis with our data-driven wavelets
would likely yield similar results, at least in the self-similar
range.

It bears repeating that the self-similarity of the wavelets pro-
duced by the DDWD is not a result of the method; rather, it is a
reflection of the system. In the case of the Kuramoto-Sivashinsky
system, where we know there is no similarity across scales, there
is generally no relation between the data-driven wavelets across
scales. For HIT, where self-similarity is hypothesized in a cer-
tain range of scales, the data-driven wavelets show self-similarity.
Hellstrom et al. (14) made a somewhat related observation in
turbulent pipe flow. They performed PCA on a set of experimen-
tally obtained velocity fields from a cross-section of the pipe and
found that they could rescale the modes so that they overlapped.
This observation is consistent with the attached eddy hypothesis
about the structure of wall turbulence (5, 40). Their modes were
global in space, as usually results from PCA; this is particularly
true for the azimuthal direction, for which PCA yields Fourier
modes due to periodicity. For the HIT data, which are periodic in
all three directions, PCA would yield Fourier modes in all three
directions, revealing no information about the system that could
not be obtained from Fourier decomposition.

Conclusions

We have introduced a method that integrates key aspects of PCA
and wavelet analysis to yield a DDWD. This method takes an
ensemble of data vectors corresponding to field values at a lat-
tice of points in space (or time) and generates a hierarchical
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Fig. 8. Comparison between computed wavelets (\>=10") and ones
obtained by dilating and rescaling the wavelet from the previous stage for
stages | =4 to | = 8 (A-E) and the level of similarity across all stages (F).
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orthogonal basis. In contrast to traditional wavelet bases, the
basis elements at each stage are not simply dilations of given
mother or father wavelets but rather are determined stage-by-
stage from the data. For data that is not self-similar, neither
are the resulting basis elements. Rather, these represent the
differing structures at the different stages. In contrast, for self-
similar data, the basis vectors at different stages are related to
one another by a simple rescaling. Indeed, for data from HIT—a
high-dimensional, nonlinear, multiscale process—we show self-
similarity of the wavelet basis elements, which in turn reveals
the self-similarity of the data, providing direct evidence for a
century-old phenomenological picture of turbulence.

Future work on the DDWD will need to extend the methodol-
ogy to multiple dimensions, different boundary conditions, and
unstructured domains. As a start, tensor products can be used
to address the first issue, boundary wavelets can be used to
address the second issue (18), and wavelets on graphs can be
used to address the last issue (41). For incompressible fluid flows,
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